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Abstract

IMPORTANCE Histopathological diagnoses of tumors from tissue biopsy after hematoxylin and
eosin (H&E) dye staining is the criterion standard for oncological care, but H&E staining requires
trained operators, dyes and reagents, and precious tissue samples that cannot be reused.

OBJECTIVES To use deep learning algorithms to develop models that perform accurate
computational H&E staining of native nonstained prostate core biopsy images and to develop
methods for interpretation of H&E staining deep learning models and analysis of computationally
stained images by computer vision and clinical approaches.

DESIGN, SETTING, AND PARTICIPANTS This cross-sectional study used hundreds of thousands of
native nonstained RGB (red, green, and blue channel) whole slide image (WSI) patches of prostate
core tissue biopsies obtained from excess tissue material from prostate core biopsies performed in
the course of routine clinical care between January 7, 2014, and January 7, 2017, at Brigham and
Women’s Hospital, Boston, Massachusetts. Biopsies were registered with their H&E-stained versions.
Conditional generative adversarial neural networks (cGANs) that automate conversion of native
nonstained RGB WSI to computational H&E-stained images were then trained. Deidentified whole
slide images of prostate core biopsy and medical record data were transferred to Massachusetts
Institute of Technology, Cambridge, for computational research. Results were shared with physicians
for clinical evaluations. Data were analyzed from July 2018 to February 2019.

MAIN OUTCOMES AND MEASURES Methods for detailed computer vision image analytics,
visualization of trained cGAN model outputs, and clinical evaluation of virtually stained images were
developed. The main outcome was interpretable deep learning models and computational
H&E-stained images that achieved high performance in these metrics.

RESULTS Among 38 patients who provided samples, single core biopsy images were extracted from
each whole slide, resulting in 102 individual nonstained and H&E dye–stained image pairs that were
compared with matched computationally stained and unstained images. Calculations showed high
similarities between computationally and H&E dye–stained images, with a mean (SD) structural
similarity index (SSIM) of 0.902 (0.026), Pearson correlation coefficient (PCC) of 0.962 (0.096), and
peak signal to noise ratio (PSNR) of 22.821 (1.232) dB. A second cGAN performed accurate
computational destaining of H&E-stained images back to their native nonstained form, with a mean
(SD) SSIM of 0.900 (0.030), PCC of 0.963 (0.011), and PSNR of 25.646 (1.943) dB compared with
native nonstained images. A single blind prospective study computed approximately 95% pixel-by-
pixel overlap among prostate tumor annotations provided by 5 board certified pathologists on
computationally stained images, compared with those on H&E dye–stained images. This study also
used the first visualization and explanation of neural network kernel activation maps during H&E
staining and destaining of RGB images by cGANs. High similarities between kernel activation maps of
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Key Points
Question Can deep learning systems

perform hematoxylin and eosin (H&E)

staining and destaining and are the

virtual core biopsy samples generated

by them as valid and interpretable as

their real-life unstained and H&E

dye–stained counterparts?

Findings In this cross-sectional study,

deep learning models were trained using

nonstained prostate core biopsy images

to generate computationally H&E

stained images, and core biopsy images

were extracted from each whole slide,

consisting of approximately 87 000

registered patch pairs of

1024 × 1024 × 3 pixels each.

Comprehensive analyses of virtually

stained images vs H&E dye–stained

images confirmed successful

computational staining.

Meaning The findings of this study

suggest that whole slide nonstained

microscopic images of prostate core

biopsy, instead of tissue samples, could

be integrated with deep learning

algorithms to perform computational

H&E staining and destaining for rapid

and accurate tumor diagnosis.
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Abstract (continued)

computationally and H&E-stained images (mean-squared errors <0.0005) provide additional
mathematical and mechanistic validation of the staining system.

CONCLUSIONS AND RELEVANCE These findings suggest that computational H&E staining of
native unlabeled RGB images of prostate core biopsy could reproduce Gleason grade tumor
signatures that were easily assessed and validated by clinicians. Methods for benchmarking,
visualization, and clinical validation of deep learning models and virtually H&E-stained images
communicated in this study have wide applications in clinical informatics and oncology research.
Clinical researchers may use these systems for early indications of possible abnormalities in native
nonstained tissue biopsies prior to histopathological workflows.
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Introduction

Cancer is the second leading cause of death in the US.1 An estimated 164 690 US men were
diagnosed with prostate cancer and 29 430 died of the disease in 2018.1 While the survival rate for
people with localized prostate cancer is more than 98%, it is reduced to 30% when the cancer
spreads to other parts of the body, such as distant lymph nodes, bones, or other organs.1 This
reduction in survival rate may be prevented with early diagnosis. The current criterion standard for
prostate cancer diagnosis uses dye staining of core biopsy tissue and subsequent microscopic
histopathologic examination by trained pathologists.2 Hematoxylin and eosin (H&E) is the most
widely used dye staining method that leverages interactions of H&E dyes with tissues for
visualization.3 Every day, up to 3 million slides are stained with this technique. The total end-to-end
processing time from slide scanning to automated staining is less than 10 minutes. However, tissue
processing of H&E dye staining for paraffin sections can take between 7 to 26 hours.4 Microscopic
diagnosis of tumors using H&E dye–stained biopsy slides presents challenges, such as inconsistencies
introduced during tissue preparation and staining and human errors, and it also requires significant
processing time, imaging systems, and procedural costs.5 Other key challenges include sampling
time, which can limit the amount of tissue that can be stained owing to time and cost involved,
resulting in evaluation of only three 4-μm sections of tissue to represent a 1-mm diameter core.6

Irreversible dye staining of tissues leads to loss of precious biopsy samples that are no longer
available for biomarker testing. Automated, low-cost, and rapid generative algorithms and methods
that can convert native nonstained whole slide images (WSIs) to computationally H&E stained
versions with high precision could be transformative by benefiting patients and physicians and by
reducing errors and costs.

Whole-slide pathological images are approved by the US Food and Drug Administration7 for
cancer diagnosis and can rapidly be integrated into machine learning and artificial intelligence
algorithms for automatic detection of cellular and morphological structures to tumors and virtual
staining.8 Studies testing operational feasibility and validation of results obtained by generative
models and machine learning algorithms in controlled clinical trials or hospital studies for virtual
staining of whole-slide pathology images do not exist, to our knowledge, precluding clinical
deployment of these systems.

We previously communicated convolutional neural networks for learning associations between
expert annotations of disease and fluorescent biomarkers manifested on RGB (red, green, and blue
channel) images and their complementary nonfluorescent pixels found on standard white-light
images.9 Subsequently, we communicated conditional generative adversarial neural networks
(cGANs) that accept native nonstained prostate core biopsy autofluorescence RGB WSIs and
computationally stain them in a manner visually similar to H&E by learning hierarchical nonlinear
mappings between image pairs before and after H&E dye staining.10 In this study, we report several
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novel mechanistic insights and methods to facilitate benchmarking and clinical and regulatory
evaluations of computationally H&E stained images for oncological applications. Specifically, we
trained high fidelity, explainable, and automated computational staining and destaining algorithms
to learn mappings between naturally autofluorescent pixels11 of nonstained cellular organelles and
their stained counterparts. We also devised robust loss function for our machine learning algorithms
to preserve tissue structure. Furthermore, we established that our virtual staining neural network
models were generalizable to accurately stain previously unseen images acquired from patients and
tumor grades not part of training data. We generated neural activation maps to provide the first
instance of explainability and mechanisms used by cGANs models for virtual H&E staining and
destaining and establish computer vision analytics to benchmark the quality of generated images.
Finally, we evaluated computationally stained images for prostate tumor diagnoses with multiple
pathologists for clinical evaluation (Figure 1).

By describing explainable algorithms and quantitative methods that can consistently, rapidly,
and accurately perform computational staining and destaining of prostate biopsy RGB WSI, this study
communicates a detailed method and process that may be useful to generate evidence for clinical
and regulatory authentication of computationally H&E stained images. However, greater numbers of
virtually stained H&E images sourced from larger pools of patients are needed for prospective
evaluation of such models.

Methods

Partners Human Research Committee approved our study protocol for utilization of excess material
from prostate core biopsies performed in the course of routine clinical care between January 7, 2014,
and January 7, 2017, at Brigham and Women’s Hospital, Boston, Massachusetts. Informed consent
was waived because data were deidentified and samples were obtained as part of routine clinical
care. Deidentified WSIs and electronic health record (EHR) data were transferred to the
Massachusetts Institute of Technology for processing and analyses and was exempt from
institutional review board review per the Massachusetts Institute of Technology’s Committee on the
Use of Humans as Experimental Subjects. This study is reported following Transparent Reporting of
a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) reporting guideline.

Study Population
Thirty-eight men (mean [SD] age, 66.2 [8.9] years), including 32 white men (84%), 4 African
American men (11%), 1 Hispanic/Latino man (3%), and 1 Dominican man (3%), provided 46 core
biopsy samples (eTable 1 in the Supplement). Each biopsy sample contained 1 to 6 cores of tissue, and
0% to 100% of each tissue core contained prostatic adenocarcinoma of various Gleason grades.
Individual prostate tissue needle core biopsy images from each whole slide image were extracted,
which resulted in 102 high-resolution native nonstained and H&E dye–stained image pairs that were
registered to form 102 RGB WSIs pair images.

Deparaffinized nonstained slides were scanned at 20 × magnification. Subsequently, slides
were stained with H&E dye on a Dako autostainer (Agilent), and these stained slides were rescanned
at 20 × magnification at Harvard Medical School Tissue Microarray and Imaging Core. Deidentified
data in the form of nonstained and H&E dye–stained images at 20 × magnification were analyzed at
Massachusetts Institute of Technology. Individual prostate tissue needle core biopsy images from
each WSI were extracted, which resulted in high-resolution native nonstained and H&E dye–stained
image pairs, which then were registered to form RGB WSI pair images. The RGB WSIs were too large
to enter into deep learning networks; therefore, each image was cropped into multiple patches of
1024 × 1024 × 3 pixels, resulting in approximately 87 000 registered pair patches.
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Training and Validation Data Sets
The numbers of image patches and their Gleason grade tumor grading used in this study for test data
were 7019 Gleason grade 3 tumors, 6149 Gleason grade 4 tumors, and 270 Gleason grade 5 tumors
(eTable 1 in the Supplement) and were sufficient to study the computational staining problem. Core
biopsy images from a larger and diverse patient population from additional medical centers are
currently being procured to improve generalizability of clinical findings reported in this study. The
registered data set of images (WSI pairs) was divided into approximately 74 000 training and 13 500
validation image patches. Validation and training data sets were balanced to include images from
healthy patients as well as patients with different grades of prostate tumors and of each tumor grade.
More information about the data collection process and training and validation sample descriptions
can be found in eAppendix 1 and eTable 1 in the Supplement.

Figure 1. Overview of the Staining Processes
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Left, Computational staining and destaining of whole
slide prostate core biopsy images with conditional
generative adversarial neural networks (CGAN). Right,
traditional staining with hematoxylin and eosin (H&E)
dyes using physical prostate core tissue biopsy slides.
PCC indicates Pearson correlation coeffecient; PSNR,
peak signal to noise ratio; and SSIM, structural
similarity index.
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Machine Learning Model Architecture and Training
A cGAN pix2pix-based model was trained to learn distribution and mappings among registered
images in the training data set.12 The staining model accepts a native nonstained RGB WSI and
generates computationally H&E stained RGB WSI. The destaining model reverses the process and
generates computationally destained images from H&E dye–stained RGB WSI patches. A novel
Pearson correlation coefficient (PCC) term was added to the cGAN loss function to improve the
quality, enforce tissue structure preservation of computationally stained images, and help reduce the
tiling artifacts in the computationally stained image. More details about loss function and technical
implementation are presented in eAppendix 2 in the Supplement.

Image Evaluation Metrics
The computationally stained image patches generated by our model were compared with H&E dye
patches to obtain a quantitative measure of the generated images. We used PCC, peak signal to noise
ratio13 (PSNR) and structural similarity index14 (SSIM) to quantify similarities and differences between
a given pair of images at a pixel level. The values of PCC and SSIM range from 0 to 1, with higher
values indicating higher levels of similarity. Accurate values of PSNR for wireless transmission quality
loss are considered to be between 20 dB to 25 dB,15,16 and higher PSNR is better. The mean and total
increase in pixel intensity after computationally staining and destaining were calculated by
subtracting the mean pixel intensity of the second image from the first.

Clinical Validation of Computationally H&E Stained RGB WSI
Computationally stained patches from the test data set were used to reconstruct 13 RGB WSIs. Their
corresponding RGB WSI H&E dye–stained images were used as ground truth examples and also
labeled for tumors. A single-blind study was conducted for evaluation of all images for prostate
cancer diagnosis. Four board-certified and trained expert pathologists provided detailed labels in the
form of free-form outlines encompassing tumors, indicating tumor regions (with grade) and other
atypical manifestations on computationally stained and corresponding H&E dye–stained images. In
the first round, 2 randomly selected pathologists were provided computationally stained images
while H&E dye–stained images were given to the other 2 raters. After a period of 4 weeks, the image
sets were swapped among the pathologists, and another round of annotations were conducted.
Pathologists annotated images in the form of free-hand drawing using the Sedeen Viewer (PathCore)
on identical notebook computer screens (Dell Computers). By using different colors corresponding
to each tumor grade, annotations were classified with tumor grade: Gleason grade 3, Gleason grade
4, or Gleason grade 5. A separate comments box was used to note other clinical observations and
for anatomical features. The annotations and the associated labels (ie, Gleason grades 3, 4, or 5) were
extracted from the XML files generated by Sedeen using the labels and annotations using Python
code. The agreement was calculated in the form of intersection over union which measures the
number of pixels on computationally stained and corresponding H&E dye–stained images that have
common raters annotations divided by the total number of pixels present across both images.17 An
independent fifth clinical pathologist ratified corresponding computationally stained images.
Accuracies and errors were calculated using pixel-by-pixel overlap in the labels. Color-coded error
overlaid validation images were generated visualizing the true positives, false positives, and false
negatives (eFigure 1 in the Supplement).

Activation Maps
Input images containing Gleason grade 3, 4, and 5 signatures were entered into our trained
computational staining network to visualize activation maps for each input image. Full-scale RGB
WSIs at 20 × resolution were collected and constructed for 8 image data sets (ie, 4 pairs), each with
13 images: ground native nonstained, ground H&E dye–stained, predicted reconstructed
computationally stained, and predicted reconstructed destained (also referred to as predicted
destained images) (eAppendix 3 in the Supplement). A total of 448 unique patches in each of the 8
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data sets with no overlap were created for each data set and set to size 1024 × 1024 × 3 (3 color
channels). For each matching patch pair to be entered into computational staining or destaining
models, we examined the grid linearly and isolated consolidated activation maps from layer 1 to layer
19 (eFigure 2 in the Supplement). These individual activation maps concatenated together to form a
single image per layer of the model architecture. Examples of concatenated activation maps are
presented in eFigure 3 and eFigure 4 in the Supplement. The normalized mean-square error (MSE)
was calculated for all layers between the matching patch pairs (eAppendix 3 and eFigure 5 in the
Supplement).

Results

Quantitative Evaluation of Computationally Stained and Destained Images
Computationally H&E stained WSIs were compared pixel-by-pixel to corresponding H&E dye–stained
images (Table 1). We calculated SSIM and PSNR (in logarithmic dB), and PCC were used as quality
measures of computationally stained images with H&E dye–stained images regarded as ground
truth.18,19 A mean (SD) SSIM of 0.902 (0.026), PCC of 0.962 (0.096), and PSNR of 22.821 (1.232) dB
were calculated, indicating high accuracy of computational H&E staining of test images. High PCC
accuracy scores (81.8% of patches with PCC �0.7 and 39.4% patches with PCC �0.8) indicate that
computationally stained patches matched H&E dye–stained patches at a pixel level.

Comparison of each RGB color channel’s pixel intensities (PXI) between native nonstained and
computationally stained images (−42 PXI), and those between native nonstained and H&E
dye–stained images (−44 PXI) show that computationally stained images had mean intensity
difference of only 2 PXI (eTable 2 in the Supplement). Similar low differences between ground truth
H&E dye and computationally stained images were observed after comparing individual color
channels listed in eTable 3 in the Supplement: red channel (unstained vs computationally stained:
−58 PXI; unstained vs H&E stained: −58 PXI; H&E vs computationally stained: 0 PXI), green channel
(unstained vs computationally stained: 6 PXI, unstained vs H&E stained: −8 PXI, H&E vs
computationally stained: 2 PXI), and blue channel (unstained vs computationally stained: −62 PXI,
unstained vs H&E stained: −65 PXI, H&E vs computationally stained: 3 PXI).

Table 1. Comparison of Computationally Stained and Ground Truth H&E Dye–Stained Images,
and of Computationally Destained vs Ground Truth Native Nonstained Images

Image

Computationally stained vs H&E stained Computationally destained vs nonstained

PCC, %a SSIM, %b PSNR, dbc PCC, %a SSIM, %b PSNR, dbc

1 95.0 86.0 20.563 95.1 85.3 23.486

2 95.2 89.1 22.387 96.5 89.5 25.706

3 94.9 86.0 20.683 96.4 86.6 24.871

4 95.7 92.9 22.870 96.8 93.6 27.469

5 96.0 94.7 24.838 97.0 94.9 21.194

6 95.5 91.4 22.903 95.7 91.4 25.285

7 96.0 88.1 22.486 93.8 86.5 21.863

8 96.8 93.1 24.132 95.9 92.7 26.164

9 97.8 89.0 23.411 96.8 87.4 24.165

10 95.6 91.3 23.177 96.7 92.7 27.359

11 97.2 90.7 23.945 98.4 89.9 26.792

12 97.5 90.2 23.200 96.3 89.9 24.957

13 96.5 89.9 22.074 97.0 90.0 26.082

Total, mean (SD) 96.1 (1.0) 90.2 (2.6) 22.821 (1.232) 96.3 (1.1) 90.0 (3.0) 25.646 (1.943)

Abbreviations: H&E hematoxylin and eosin; PCC, Pearson correlation coefficient; PSNR,
peak signal to noise ratio; SSIM, structural similarity index.
a Pearson correlation coefficient of 1.0 indicates a perfect match.

b Structural similarity index of 1.0 indicates perfect match.
c Peak signal to noise ratio of 22 dB or more is considered high quality.
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Prostate core biopsy H&E dye–stained images were computationally destained and compared
with native nonstained images. Mean (SD) PCC was 0.900 (0.030), mean (SD) SSIM was 0.963
(0.011), and mean (SD) PSNR was 25.646 (1.1943) dB (Table 1), thus showing high similarities with
native ground truth nonstained images. RGB pixel intensities between computationally destained
and H&E dye–stained images (47 PXI), and native nonstained and H&E dye–stained images (44 PXI)
also indicated that computationally destained and ground truth nonstained images only had 3 PXI
difference in their overall intensities (eTable 2 in the Supplement). These results indicate high fidelity
of learning, reproducing, and erasing of multichromatic information by computational H&E staining
and destaining algorithms. Mean (SD) change in pixel intensities in the red and blue channels were
higher compared with the green channel likely because H&E dye predominantly consists of blue and
red or pink colors.

Analyses of Physician Annotations
Intersection over union indicating agreements or disagreements among pathologists examining the
same set of images (intra–intersection over union) was calculated by pixel-by-pixel comparisons of
their tumor and nontumor annotations (eTable 4 in the Supplement). Pathologists examining H&E
dye–stained images had high mean (SD) intra–intersection over union agreement scores for
diagnosing any tumors (0.81 [0.07]). Pathologists examining computationally H&E stained images
also had high and comparable mean (SD) intra–intersection over union agreement scores for
diagnosing any tumor (0.77 [0.08]). These results indicated high internal consistency in clinical
diagnoses provided by each set of pathologists on their respective images. Furthermore, tumor
diagnoses using computationally stained images were not associated with rater’s sensitivity or
specificity while detecting tumors.

Tumor labels provided by 2 sets of physicians in our single-blind study on ground truth H&E
dye–stained images vs computationally stained images were then compared using inter–intersection
over union agreement score metric17 (Table 2). An overall inter–intersection over union score of 0.79
was calculated for any tumor diagnoses. The mean (SD) inter–intersection over union agreement
score for Gleason grade 3 tumors was 0.70 (0.17) and 0.73 (0.15) for Gleason grade 4 labels. Gleason
grade 5 tumors are rare, and we only had 1 example in validation data that was annotated, with an
accuracy of 0.64 (Table 2). The mean (SD) inter–intersection over union agreement score for
annotations of healthy areas in the tissue where no tumors were found on images was 0.90 (0.12)

Table 2. Intersection Over Union–Based Agreement Among Pathologists for Tumor Signatures
Provided Using Computationally Stained Images Compared With Pathologists Using Ground
Truth Hematoxylin And Eosin Dye–Stained Images

Image

Intersection over uniona

Any tumor Healthy

Gleason grade

3 4 5
1 0.90 0.96 0.90 NA NA

2 0.86 0.55 NA 0.78 NA

3 NA 1.00 NA NA NA

4 0.92 0.89 0.76 NA NA

5 0.52 0.90 NA 0.49 0.64

6 0.80 0.93 0.58 NA NA

7 0.70 0.94 0.53 NA NA

8 0.79 0.92 NA 0.77 NA

9 0.58 0.96 0.48 NA NA

10 0.86 0.86 0.70 0.72 NA

11 0.92 0.99 0.92 NA NA

12 NA 1.00 NA NA NA

13 0.93 0.78 NA 0.89 NA

Mean 0.79 (0.14) 0.90 (0.12) 0.70 (0.17) 0.73 (0.15) 0.64 (0)

Abbreviation: NA, not applicable
a Higher intersection over union score is better, with a

score of 1.0 indicating perfect match of labels.

JAMA Network Open | Health Informatics Computational Hematoxylin and Eosin Staining of Prostate Core Biopsy Images for Tumor Diagnosis

JAMA Network Open. 2020;3(5):e205111. doi:10.1001/jamanetworkopen.2020.5111 (Reprinted) May 20, 2020 7/15

Downloaded From: https://jamanetwork.com/ on 05/20/2020

https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2020.5111&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2020.5111
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2020.5111&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2020.5111


(Table 2). These results indicate that our trained machine learning models can accurately generate
both tumor and nontumor signatures via computational H&E staining. Physician raters showed
concordance and comparable sensitivity and specificity in diagnosis made using H&E dye–stained
images compared with those made by using computationally stained images.

Clinical Evaluations of Computationally Stained Images
Figure 2 shows representative input nonstained image patches that had Gleason grade 3 or 4 tumors
or were benign and their computational H&E staining and accuracy calculated using annotations by
multiple physicians. It is evident that the computationally H&E stained patches represent tumor
signatures with high accuracy, and pathologists were able to correctly identify tumors. Most
observed disagreements between raters did not represent misidentification of glands as benign or
malignant. Instead, they showed differences in rater annotation at borders of tumor labels, mainly
due to differences in labeling style. eAppendix 4 and eFigure 1 in the Supplement provide detailed
clinical evaluations and outcomes of individual patches and reconstructed RGB WSI computationally
H&E stained images.

Comparison With Patient Records
Most of the diagnoses rendered using computationally stained images agreed with the
corresponding initial clinical diagnosis reported in electronic health records (EHRs) (eTable 5 in the
Supplement), supporting the validity of the generated images for tumor detection and diagnoses.
Most of the samples showed identical tumor fractions and Gleason grading. None of the differences
between EHRs and diagnoses based on computationally H&E stained images were clinically
significant with regard to treatment decisions (eAppendix 5 in the Supplement). We were able to
overturn originally reported results in patient records in 2 instances using computationally stained
images (eFigure 1 and eAppendix 5 in the Supplement).

Figure 2. Representative Image Patches Generated by the Computational Staining Neural Network and
Their Comparison With Corresponding Ground Truth Hematoxylin and Eosin (H&E) Dye–Stained Images

A

B

C

D

I II III VIV

Row A, Deparaffinized native nonstained image
patches entered into the neural network. Row B,
Ground truth H&E dye–stained patches. Row C,
computationally H&E stained patches generated by
the neural network. Arrows in C-I indicate the 2 benign
glands, all other glands represent tumors. Row D,
shows computationally H&E stained patches overlaid
with colors indicating agreements and disagreements
between physician annotations on these images
compared with ground truth H&E dye–stained images.
Variation in labeling detail by annotators (arrows) are
shown in D-III. Green indicates true positive; blue, false
negative; and red, false positive.
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Analysis and Explanation of Neural Network Activation Maps
Neural activation maps of trained staining and destaining cGAN models were analyzed after entering
healthy or Gleason grade 3, 4, or 5 images patches (Figure 2). In this study, we did not use a
classification approach to identify image features, but rather performed pixel-by-pixel visualization,
explanation, and intensity ranking (>200 value) of various cGAN kernels to create an activation map
of a particular nonstained image patch (healthy vs with a particular Gleason tumor grade) as it passes
through each network layer while getting stained (eFigure 2 in the Supplement).

We demonstrate and compare presence of unique low- and high-level features in input images
that activate neurons and feature maps in the cGAN generator network (Figure 3; eFigure 3 and
eFigure 4 in the Supplement). For example, initial layers of the convolutional layers in the generator

Figure 3. Activation Maps of Kernels of Trained Generator
Neural Network Model

L1

L2

L3

L4

L5

L16

L17

L18

L19

I II III IV V

100 150 20050 2550
Activations

Low High

Activation maps of kernels of trained generator neural network model layers
after feeding a native nonstained prostate core biopsy image patch without
tumor as it gets computationally hematoxylin and eosin–stained. Rows show top
5 activation maps from layers L1 to L5 and L16 to L19 arranged in decreasing
order of their activations from left to right (columns I-V).
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detected low-level features, such as tissue geometry, edges, corners, shapes, and a few changes in
color (Figure 3; eFigure 3, and eFigure 4 in the Supplement). We observed well-demarcated
boundaries between tissues and background and gross distinctions between glands and stroma are
suggested (Figure 3) or are well defined (eFigure 3 in the Supplement). Kernels of initial layers of
trained models thus help with differentiating tissue from background and morphological tasks to
define higher order anatomical structures. The later convolutional layers leverage previously learned
low level features and ability to differentiate tissue from background with fine-grained structures,
such as anatomical arrangement of nuclei and tumor signatures (Figure 3; eFigure 3 and eFigure 4 in
the Supplement). eFigure 4 in the Supplement shows additional examples of indeterminate atypical
glands and tumors with edge or crush artifacts that are well preserved on the computationally
generated images but were differentially designated as tumor or nontumor by raters. The activation
maps of kernels of various generator neural network layers after feeding H&E dye–stained patch with
Gleason grade 4 and 5 prostate tumors were demonstrated.

We compared kernel activation maps of all 448 validation image patches used to test our
trained staining and destaining machine learning models with corresponding ground truth
dye-stained and native nonstained images (eFigure 5 in the Supplement). The MSE was calculated by
comparing activation maps generated by each of the 19 neural network layers in response to pairs of
images being evaluated. The MSE was low for the first layer, increases for second layer, and then
decreases for the remaining layers. These results, in unification with our detailed SSIM, PSNR, PCC,
and physician validation, provide significant evidence of the high quality of computationally stained
and destained images, with consequent high sensitivity and specificity in diagnosing tumors
using them.

Discussion

Most surgical and medical treatments for cancer, including chemotherapy, endocrine therapy, and
immunotherapy, are dictated by histopathologic examination and diagnosis. Increase in use of core
biopsies for diagnosis, in place of larger surgical biopsies, has resulted in significant decrease in the
volume of tumor available for performing an ever-increasing battery of biomarker testing for
diagnostic, prognostic, and predictive information. In this cross-sectional study, computationally
stained and destained images were evaluated by multiple image analytics and matched ground truth
images with high similarity. The high quality of the computationally stained and destained images
were comprehensively and stringently validated using pixel-based comparison (eg, MSE, PSNR),
spatial structural comparison (eg, SSIM), and localized correlational comparison (eg, PCC), which
revealed their macroscopic and microscopic suitability for clinical deployment.

Evaluation by trained pathologists showed tumorous and healthy tissues were morphologically
well represented most of the computationally stained images with high accuracy. The glands and
stroma of benign prostatic tissue and carcinoma were identifiable, showing preserved architectural
features (ie, location and shape of the glands), defined gland/stromal interface, and cytological
characteristics (ie, location and appearance of the nuclei and nucleoli, if present). Most of the
differences in annotations were observed either on the tumor/nontumor interface or boundary or
the biopsy boundary. This can be attributed to the labeling style of individual raters.17 Previous
studies have reported that human readers show substantial variability and lower performance
compared with computer algorithms in terms of tumor segmentations.8,20 A similar limitation of
using a human reader panel to establish a reference standard for evaluation of computer algorithms
may have affected this study. In validation images, presence of morphologically ambiguous glands, a
known histopathological dilemma that clinically requires additional testing for confident diagnosis,
also led to differing labels among raters, as they were asked to categorize each gland as benign or
malignant without assistance from supplemental studies. In most cases, these ambiguous cases were
well represented in the computationally stained images but led to labeling differences owing to the
ambiguity of these regions of interest. Small difference calculated by PSNR, SSIM, and PCC,
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independent of the human raters, may also be in part due to registration differences in small, out-of-
focus areas during whole-slide imaging. Input image pairs (ie, nonstained and H&E stained) used for
training in our work were corrected for differences in field of view, illumination, and focal planes, but
they may still have had minor variances. However, these small variances in computationally stained
images had no effects on overall clinical assessments. Color variations in digital slides may have been
due to differences in staining reagents, thickness of tissue sections, and staining protocols, which
can negatively affect clinical diagnoses. We report minimal color variation across our computationally
stained H&E images, as seen by their uniform overall RGB and individual RGB channel intensity
values, which often matched training images. Physician raters in the study did not report difficulty in
reading colors of nuclei, glands, cells, and tumors in computationally stained images, which was
ratified by an additional independent pathologist. Thus, the trained neural network model
reproduces a consistent and normalized color hue from the vast training data set that does not affect
clinical decision-making from computational images. The subsequent absence of false-positive errors
in healthy tissue cores of patients illustrates the fine grain reproduction of our computationally
stained and destained images. We were also pleased to find high concordances between diagnoses
made using the computationally stained images in this study and the patient’s EHR. In fact, we found
2 instances in which the diagnoses made using computationally stained images overturned the initial
findings in the EHR. In both cases, additional laboratory tests and clinical examinations were
performed to confirm our findings. These results demonstrated that raters and the tumor diagnosis
performed using computationally stained WSI used in our study matched or exceeded the initial
microscopic diagnosis performed using H&E-stained tissue slides after prostate biopsy extraction.

Virtual staining of histopathological slide images has been reported using approaches with
signals that require long detection times,21 dye staining of nonstained specimens prior to imaging,22

laser illumination and excitation with specific wavelengths,23 sparse sampling, and poor depth
resolution.22,24 Previous virtual staining studies have performed limited analytics25 to benchmark
the quality of their virtually stained images. Most previous studies did not perform pixel-level
comparisons with ground truth images and used small numbers of nonblinded raters who used
coarse annotations without tumor gradations.26,27 While other studies have reported no clinical
validation and benchmarking of their results.28-30 Similarly, previous deep learning research for
virtual staining has used specialized illumination sources and did not report robust validation studies
on mechanisms to establish computer vision or diagnostic utility of generated images.8 Bayramoglu
et al31 virtually stained lung tissue slides multispectral images with a cGAN and achieved an SSIM of
0.3873, but they performed no clinical validation. Bulingame et al32 used cGAN to convert
H&E-stained pancreas slide RGB images to immunofluorescence images and achieve an SSIM of
0.883, but they also did not report clinical validation of generated images. Two studies by Rivenson
et al33,34 used a fluorescence scope with specialized ultraviolet filters to capture various tissue biopsy
images and virtually H&E stain them using a neural network. Results and findings communicated in
our study differ from previous deep learning based virtual staining studies in several key aspects. As
examples, a wide field fluorescence microscope to image tissue33,34 vs the nonfluorescent mode of
the Food and Drug Administration–approved and widely available automated slide scanning system
to capture images used in our study. A single pathologist compared anatomical features among
virtually stained images using coarse labels, and pixel-level comparisons between tumor labels on
virtual and ground truth images or concordance with EHR of patients were not conducted to
calculate true- and false-positive occurrences of tumor diagnoses reported in that study.33,34

Computational destaining of tissue images and stringent image analytics, such as PSNR or PCC, to
benchmark quality of virtually stained images have not been reported in previous deep learning
based studies.31-34 Analysis or visualization of key neural network kernels and image features that get
activated during the staining process have not been investigated, thus precluding mechanistic
insights or mathematical validation of previous findings reported in literature.31-34

In this study, we evaluated trained neural network models that computationally stained native
unlabeled RGB images of prostate core biopsy (acquired without band pass filters or specialized
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hardware) with anatomical features of prostate and reproduce cancer tumor signatures with high
accuracies. Computational pixel-by-pixel analysis and comparisons using PSNR, SSIM, and PCC
demonstrated high similarities between our computationally stained images and their H&E
dye–stained counterparts. Pixel-by-pixel changes in RGB color channels after computational staining
and destaining by neural networks matched corresponding changes in RGB intensity when native
nonstained images were H&E dye–stained in pathology laboratories vice versa. Detailed clinical
validation in a single blind study found high interrater and intrarater agreements, calculated by pixel-
by-pixel analyses of tumor labels provided by multiple board certified and trained physicians.
Computationally stained images thus accurately represented healthy tissue as well as tumors of
different Gleason grades, which were easily detected by human visual perception. Clinical diagnoses
made using computationally stained images in our study were consistent with tumor diagnoses
reported in EHRs. We investigated layers of generator neural networks and calculated activation of
kernels during staining of different prostate tumor grades and benign tissue signatures to visualize
and explain the process of computational H&E staining and destaining. Activation maps of our
trained neural network models during computational staining or destaining of test images were
highly similar to H&E dye–stained or native nonstained images. Thus, by visualizing and comparing
activation feature maps of kernels of trained models, this work also presents the first explainable
deep neural network framework for computationally H&E staining or destaining of native RGB
images, to our knowledge.

Limitations
There were a few limitations of this study. The validation process for tumor diagnoses and Gleason
grading of computationally H&E stained images can be affected by interobserver variability. For
example, despite using a large rater panel in a single-blind study, tumor regions annotated by
pathologists on WSIs are often coarse and may contain nonrelevant tissue that increases
disagreements. Additional fine-grained image annotation tools are needed for precise validation of
results generated by computational staining algorithms. The amount of data or number of patients
used in this study was not exhaustive for clinical trials or other regulatory evaluations. The numbers
of images used were found to be sufficient for accurate H&E staining, and adding additional images
could result in modest improvements. This study described detailed methods that could be used to
interpret deep learning systems and virtually H&E-stained images derived from them by computer
vision analytics, and our findings may be useful to clinical and regulatory science researchers in the
field. Because Gleason grade 5 tumors are quite rare, only 1 WSI was evaluated in the validation data
that was annotated with intersection over union accuracy of 0.64. More nuanced diagnostic
validation requiring evaluation of tissue beyond typical H&E staining (eg, evaluation requiring
immunohistochemical staining) is not addressed in this study and is a possible development area of
this work. The clinical outcomes from this study are limited to the evaluation of prostate core
biopsies as a representative tissue type, but our methods and approach should generalize to other
tissue biopsy evaluations. Application to other tumor types within core biopsies or to resection
specimens of prostate cancer or other conditions will be evaluated in future work.

Conclusions

This cross-sectional study communicates methods and processes that may be useful for additional
research and validation of computational H&E staining deep learning models and images generated
by them. Adoption of these systems may reduce the time and effort required for manual staining and
slide preparation, and more importantly, enable the preservation of precious tissue samples which
could be used in a targeted fashion for biomarker evaluation. Greater numbers of virtually stained
H&E images sourced from larger pools of patients are needed before prospective clinical evaluation
of models described in this study can begin.35-37

JAMA Network Open | Health Informatics Computational Hematoxylin and Eosin Staining of Prostate Core Biopsy Images for Tumor Diagnosis

JAMA Network Open. 2020;3(5):e205111. doi:10.1001/jamanetworkopen.2020.5111 (Reprinted) May 20, 2020 12/15

Downloaded From: https://jamanetwork.com/ on 05/20/2020



ARTICLE INFORMATION
Accepted for Publication: February 28, 2020.

Published: May 20, 2020. doi:10.1001/jamanetworkopen.2020.5111

Open Access: This is an open access article distributed under the terms of the CC-BY License. © 2020 Rana A et al.
JAMA Network Open.

Corresponding Author: Pratik Shah, PhD, Massachusetts Institute of Technology, Program in Media Arts and
Sciences, 20 Ames St, Cambridge, MA 02139 (pratiks@mit.edu).

Author Affiliations: Program in Media Arts and Sciences, Massachusetts Institute of Technology, Cambridge
(Rana, Bayat, Shah); Harvard Medical School, Brigham and Women’s Hospital, Boston, Massachusetts (Lowe,
Horback, Janovitz, Da Silva, Tsai, Shanmugam); Department of Pathology, Stanford University Medical Center,
Stanford, California (Lowe); Boston University School of Medicine, VA Boston Healthcare, West Roxbury,
Massachusetts (Lithgow).

Author Contributions: Drs Shah and Lowe had full access to all of the data in the study and take responsibility for
the integrity of the data and the accuracy of the data analysis. Mr Rana and Dr Lowe contributed equally to
this study.

Concept and design: Rana, Lowe, Shah.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: Rana, Lowe, Shah.

Critical revision of the manuscript for important intellectual content: All authors.

Statistical analysis: Rana, Bayat, Shah.

Obtained funding: Shah.

Administrative, technical, or material support: Rana, Lowe, Lithgow, Janovitz, Da Silva, Shanmugam, Bayat.

Supervision: Lowe, Shah.

Conflict of Interest Disclosures: None reported.

Funding/Support: This study was supported by the Program in Media, Arts and Sciences at Massachusetts
Institute of Technology and Department of Pathology at Brigham and Women’s Hospital.

Role of the Funder/Sponsor: The funders had no role in the design and conduct of the study; collection,
management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and
decision to submit the manuscript for publication.

Additional Contributions: Keya Larrel Oliver provided technical assistance for the study by procuring and
coordinating samples and images from histopathological cores. Hyung-Jin Yoon, PhD assisted in analyzing results,
literature review, and minor edits to figures and tables. They were not compensated for these contributions.

REFERENCES
1. American Cancer Society. Key statistics for prostate cancer: prostate cancer facts. Accessed April 10, 2020. https://
www.cancer.org/cancer/prostate-cancer/about/key-statistics.html

2. Ravery V, Dominique S, Panhard X, Toublanc M, Boccon-Gibod L, Boccon-Gibod L. The 20-core prostate biopsy
protocol—a new gold standard? J Urol. 2008;179(2):504-507. doi:10.1016/j.juro.2007.09.033

3. Feldman AT, Wolfe D. Tissue processing and hematoxylin and eosin staining. In: Histopathology. Springer;
2014:31-43. doi:10.1007/978-1-4939-1050-2_3

4. Leica Biosystem. An introduction to specimen processing. Accessed April 10, 2020. https://www.leicabiosystems.
com/knowledge-pathway/an-introduction-to-specimen-processing/

5. McCann MT, Ozolek JA, Castro CA, Parvin B, Kovacevic J. Automated histology analysis: opportunities for signal
processing. IEEE Signal Process Mag. 2015;32:78-87. doi:10.1109/MSP.2014.2346443

6. Goldstein AS, Huang J, Guo C, Garraway IP, Witte ON. Identification of a cell of origin for human prostate cancer.
Science. 2010;329(5991):568-571. doi:10.1126/science.1189992

7. Abels E, Pantanowitz L. Current state of the regulatory trajectory for whole slide imaging devices in the USA.
J Pathol Inform. 2017;8:23. doi:10.4103/jpi.jpi_11_17

8. Niazi MKK, Parwani AV, Gurcan MN. Digital pathology and artificial intelligence. Lancet Oncol. 2019;20(5):
e253-e261. doi:10.1016/S1470-2045(19)30154-8

JAMA Network Open | Health Informatics Computational Hematoxylin and Eosin Staining of Prostate Core Biopsy Images for Tumor Diagnosis

JAMA Network Open. 2020;3(5):e205111. doi:10.1001/jamanetworkopen.2020.5111 (Reprinted) May 20, 2020 13/15

Downloaded From: https://jamanetwork.com/ on 05/20/2020

https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2020.5111&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2020.5111
https://jamanetwork.com/journals/jamanetworkopen/pages/instructions-for-authors#SecOpenAccess/?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2020.5111
mailto:pratiks@mit.edu
https://www.cancer.org/cancer/prostate-cancer/about/key-statistics.html
https://www.cancer.org/cancer/prostate-cancer/about/key-statistics.html
https://dx.doi.org/10.1016/j.juro.2007.09.033
https://dx.doi.org/10.1007/978-1-4939-1050-2_3
https://www.leicabiosystems.com/knowledge-pathway/an-introduction-to-specimen-processing/
https://www.leicabiosystems.com/knowledge-pathway/an-introduction-to-specimen-processing/
https://dx.doi.org/10.1109/MSP.2014.2346443
https://dx.doi.org/10.1126/science.1189992
https://dx.doi.org/10.4103/jpi.jpi_11_17
https://dx.doi.org/10.1016/S1470-2045(19)30154-8


9. Yauney G, Angelino K, Edlund D, Shah P. Convolutional neural network for combined classification of
fluorescent biomarkers and expert annotations using white light images. Abstract presented at: 2017 IEEE: 17th
International Conference on Bioinformatics and Bioengineering; October 23, 2017; Washington, DC. doi:10.1109/
BIBE.2017.00-37

10. Rana A, Yaunery G, Lowe A, Shah P. Computational histological staining and destaining of prostate core biopsy
RGB images with generative adversarial neural networks. Abstract presented at: 2018 IEEE: 17th International
Conference on Machine Learning and Applications; December 17-20, 2018; Orlando, FL.

11. Monici M. Cell and tissue autofluorescence research and diagnostic applications. Biotechnol Annu Rev. 2005;
11:227-256. doi:10.1016/S1387-2656(05)11007-2

12. Isola P, Zhu JY, Zhou T, Efros AA. Image-to-image translation with conditional adversarial networks. In: 2017
IEEE Conference on Computer Vision and Pattern Recognition; July 21-26, 2017; Honolulu, HI. doi:10.1109/
CVPR.2017.632

13. National Instruments. Peak signal-to-noise ratio as an image quality metric. Updated March 5, 2019. Accessed
April 10, 2020. https://www.ni.com/en-us/innovations/white-papers/11/peak-signal-to-noise-ratio-as-an-image-
quality-metric.html

14. Zhang L, Zhang L, Mou X, Zhang D. FSIM: a feature similarity index for image quality assessment. IEEE Trans
Image Process. 2011;20(8):2378-2386. doi:10.1109/TIP.2011.2109730

15. Thomos N, Boulgouris NV, Strintzis MG. Optimized transmission of JPEG2000 streams over wireless channels.
IEEE Trans Image Process. 2006;15(1):54-67. doi:10.1109/TIP.2005.860338

16. Xiangjun L, Jianfei C. Robust Transmission of JPEG2000 Encoded Images Over Packet Loss Channels. ICME;
2007:947-950.

17. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):
159-174. doi:10.2307/2529310

18. Hore A, Ziou D. Image quality metrics: PSNR vs. SSIM. Paper presented at: 20th International Conference on
Pattern Recognition; August 23-26, 2010; Istanbul, Turkey.

19. Potetz B, Lee TS. Statistical correlations between two-dimensional images and three-dimensional structures
in natural scenes. J Opt Soc Am A Opt Image Sci Vis. 2003;20(7):1292-1303. doi:10.1364/JOSAA.20.001292

20. Senaras C, Niazi MKK, Lozanski G, Gurcan MN. DeepFocus: detection of out-of-focus regions in whole slide
digital images using deep learning. PLoS One. 2018;13(10):e0205387. doi:10.1371/journal.pone.0205387

21. Tu H, Liu Y, Turchinovich D, et al. Stain-free histopathology by programmable supercontinuum pulses. Nat
Photonics. 2016;10(8):534-540. doi:10.1038/nphoton.2016.94

22. Fereidouni F, Harmany ZT, Tian M, et al. Microscopy with ultraviolet surface excitation for rapid slide-free
histology. Nat Biomed Eng. 2017;1(12):957-966. doi:10.1038/s41551-017-0165-y

23. Tao YK, Shen D, Sheikine Y, et al. Assessment of breast pathologies using nonlinear microscopy. Proc Natl Acad
Sci U S A. 2014;111(43):15304-15309. doi:10.1073/pnas.1416955111

24. Mertz J. Optical sectioning microscopy with planar or structured illumination. Nat Methods. 2011;8(10):
811-819. doi:10.1038/nmeth.1709

25. Lahiani A, Klaiman E, Grimm O. Enabling histopathological annotations on immunofluorescent images through
virtualization of hematoxylin and eosin. J Pathol Inform. 2018;9:1. doi:10.4103/jpi.jpi_61_17

26. Orringer DA, Pandian B, Niknafs YS, et al. Rapid intraoperative histology of unprocessed surgical specimens via
fibre-laser-based stimulated Raman scattering microscopy. Nat Biomed Eng. 2017;1(2):0027. doi:10.1038/s41551-
016-0027

27. Petersen D, Mavarani L, Niedieker D, et al. Virtual staining of colon cancer tissue by label-free Raman micro-
spectroscopy. Analyst. 2017;142(8):1207-1215. doi:10.1039/C6AN02072K

28. Bautista PA, Abe T, Yamaguchi M, Yagi Y, Ohyama N. Digital staining of pathological tissue specimens using
spectral transmittance. Medical Imaging 2005. Image Processing. 2005;5747:1892-1903.

29. Bautista PA, Abe T, Yamaguchi M, Yagi Y, Ohyama N. Digital staining for multispectral images of pathological
tissue specimens based on combined classification of spectral transmittance. Comput Med Imaging Graph. 2005;
29(8):649-657. doi:10.1016/j.compmedimag.2005.09.003

30. Bini J, Spain J, Nehal K, Hazelwood V, DiMarzio C, Rajadhyaksha M. Confocal mosaicing microscopy of basal-
cell carcinomas ex vivo: progress in digital staining to simulate histology-like appearance. Paper presented at:
Advanced Biomedical and Clinical Diagnostic Systems IX; February 21, 2011; San Francisco, CA.

JAMA Network Open | Health Informatics Computational Hematoxylin and Eosin Staining of Prostate Core Biopsy Images for Tumor Diagnosis

JAMA Network Open. 2020;3(5):e205111. doi:10.1001/jamanetworkopen.2020.5111 (Reprinted) May 20, 2020 14/15

Downloaded From: https://jamanetwork.com/ on 05/20/2020

https://dx.doi.org/10.1109/BIBE.2017.00-37
https://dx.doi.org/10.1109/BIBE.2017.00-37
https://dx.doi.org/10.1016/S1387-2656(05)11007-2
https://dx.doi.org/10.1109/CVPR.2017.632
https://dx.doi.org/10.1109/CVPR.2017.632
https://www.ni.com/en-us/innovations/white-papers/11/peak-signal-to-noise-ratio-as-an-image-quality-metric.html
https://www.ni.com/en-us/innovations/white-papers/11/peak-signal-to-noise-ratio-as-an-image-quality-metric.html
https://dx.doi.org/10.1109/TIP.2011.2109730
https://dx.doi.org/10.1109/TIP.2005.860338
https://dx.doi.org/10.2307/2529310
https://dx.doi.org/10.1364/JOSAA.20.001292
https://dx.doi.org/10.1371/journal.pone.0205387
https://dx.doi.org/10.1038/nphoton.2016.94
https://dx.doi.org/10.1038/s41551-017-0165-y
https://dx.doi.org/10.1073/pnas.1416955111
https://dx.doi.org/10.1038/nmeth.1709
https://dx.doi.org/10.4103/jpi.jpi_61_17
https://dx.doi.org/10.1038/s41551-016-0027
https://dx.doi.org/10.1038/s41551-016-0027
https://dx.doi.org/10.1039/C6AN02072K
https://dx.doi.org/10.1016/j.compmedimag.2005.09.003


31. Bayramoglu N, Kaakinen M, Eklund L, Heikkila J. Towards virtual H&E staining of hyperspectral lung histology
images using conditional generative adversarial networks. Paper presented at: 2017 IEEE International Conference
on Computer Vision; October 22-29, 2017; Venice, Italy.

32. Burlingame EA, Margolin AA, Gray JW, Chang YH. SHIFT: speedy histopathological-to-immunofluorescent
translation of whole slide images using conditional generative adversarial networks. Paper presented at: SPIE
Medical Imaging; February 10-15, 2018; Houston, TX.

33. Rivenson Y, Wang H, Wei Z, et al. Virtual histological staining of unlabelled tissue-autofluorescence images via
deep learning. Nat Biomed Eng. 2019;3(6):466-477. doi:10.1038/s41551-019-0362-y

34. Rivenson Y, Wang H, Wei Z, et al. Deep learning-based virtual histology staining using auto-fluorescence of
label-free tissue. Nat Biomed Eng. 2019;3(6):466-477. doi:10.1038/s41551-019-0362-y

35. US Food and Drug Administration. Digital health. Accessed April 10, 2020. https://www.fda.gov/medical-
devices/digital-health

36. US Food and Drug Administration. Digital health innovation action plan. Accessed April 10, 2020. https://www.
fda.gov/media/106331/download

37. Shah P, Kendall F, Khozin S, et al. Artificial intelligence and machine learning in clinical development:
a translational perspective. NPJ Digit Med. 2019;2(1):69. doi:10.1038/s41746-019-0148-3

SUPPLEMENT.
eAppendix 1. Data Collection and Image Registration Process
eTable 1. Data Distribution
eAppendix 2. Loss Function
eAppendix 3. Interpretation
eFigure 1. Color Coded Overlaid Validation Images
eFigure 2. Visualization and Explanation of Computational Hematoxylin and Eosin Staining Process by Custom
Autoencoder Neural Network
eFigure 3. Activation Maps of Kernels of Trained Generator Neural Network Model Layers
eFigure 4. Activation Maps of Kernels of Various Generator Neural Network Layers After Entering Hematoxylin
And Eosin Dye–Stained Patch With Gleason Grades 4 And 5 Prostate Tumor
eFigure 5. Comparison of Mean Squared Errors Between Kernel Activation Maps of Pairs of 448 Validation Image
Patches Generated by the Trained Neural Network Models
eTable 2. Mean Pixel Intensity Following Computational Staining and Destaining
eTable 3. Change in Mean Pixel Intensity in Red, Green, and Blue Channels per Image
eTable 4. Intrarater Agreement Calculated on Dye Stained and Computationally Stained Images
eAppendix 4. Evaluation of the Activation Maps of Trained Deep Neural Network
eTable 5. Comparison of Tumor Grades Between Original Expert Microscopic Diagnosis
eAppendix 5. Comparison With Patient Records
eReferences

JAMA Network Open | Health Informatics Computational Hematoxylin and Eosin Staining of Prostate Core Biopsy Images for Tumor Diagnosis

JAMA Network Open. 2020;3(5):e205111. doi:10.1001/jamanetworkopen.2020.5111 (Reprinted) May 20, 2020 15/15

Downloaded From: https://jamanetwork.com/ on 05/20/2020

https://dx.doi.org/10.1038/s41551-019-0362-y
https://dx.doi.org/10.1038/s41551-019-0362-y
https://www.fda.gov/medical-devices/digital-health
https://www.fda.gov/medical-devices/digital-health
https://www.fda.gov/media/106331/download
https://www.fda.gov/media/106331/download
https://dx.doi.org/10.1038/s41746-019-0148-3


© 2020 Rana A et al. JAMA Network Open. 

Supplementary Online Content 

 

Rana A, Lowe A, Lithgow M, et al. Use of deep learning to develop and analyze 
computational hematoxylin and eosin staining of prostate core biopsy images for tumor 
diagnosis. JAMA Netw Open. 2020;3(5):e205111. 
doi:10.1001/jamanetworkopen.2020.5111 

 

eAppendix 1. Data Collection and Image Registration Process 
eTable 1. Data Distribution 
eAppendix 2. Loss Function  
eAppendix 3. Interpretation 
eFigure 1. Color Coded Overlaid Validation Images 
eFigure 2. Visualization and Explanation of Computational Hematoxylin and Eosin 
Staining Process by Custom Autoencoder Neural Network 
eFigure 3. Activation Maps of Kernels of Trained Generator Neural Network Model 
Layers 
eFigure 4. Activation Maps of Kernels of Various Generator Neural Network Layers 
After Entering Hematoxylin And Eosin Dye–Stained Patch With Gleason Grades 4 And 
5 Prostate Tumor 
eFigure 5. Comparison of Mean Squared Errors Between Kernel Activation Maps of 
Pairs of 448 Validation Image Patches Generated by the Trained Neural Network 
Models 
eTable 2. Mean Pixel Intensity Following Computational Staining and Destaining 
eTable 3. Change in Mean Pixel Intensity in Red, Green, and Blue Channels per Image 
eTable 4. Intrarater Agreement Calculated on Dye Stained and Computationally Stained 
Images 
eAppendix 4. Evaluation of the Activation Maps of Trained Deep Neural Network  
eTable 5. Comparison of Tumor Grades Between Original Expert Microscopic 
Diagnosis   
eAppendix 5. Comparison With Patient Records 
eReferences 

 

This supplementary material has been provided by the authors to give readers 
additional information about their work. 

 

 

 

  



© 2020 Rana A et al. JAMA Network Open. 

eAppendix 1. Data Collection and Image Registration Process 

Data collection, transfer and processing of whole slide images: Thirty-eight patients (mean age 66.2 years) 

consisting of White, African American, Hispanic/Latino, and Asian men provided forty-six core biopsy samples. 

Of these, nine patients had known prostate cancer diagnosis and were undergoing active surveillance. Eighteen 

patients underwent subsequent prostatectomy and the remaining were either healthy or undergoing prostate cancer 

treatment at Brigham and Women’s Hospital. Each biopsy sample contained one to six cores of tissue. Zero to 

100% of each tissue core contained prostatic adenocarcinoma of various Gleason grades. Samples were enriched 

for higher-grade tumors (Gleason grade 4 and 5). Forty-six non-stained and corresponding H&E dye stained RWSI 

were collected from 38 patients and imaged at 20x magnification. Briefly, prostate core biopsy specimens were 

immediately fixed in 10% formalin, paraffin embedded, cut into 4-micron thick sections and placed on standard 

glass slides that were placed in archival storage at room temperature. Deparaffinized non-stained slides were 

scanned with the Aperio ScanScope XT system (Leica Biosystems, Buffalo Grove, IL) at 20x magnification. 

Subsequently, the slides were stained with H&E dye on the Agilent Dako Autostainer (Agilent, Santa Clara, CA), 

and these stained slides were re-scanned on the Aperio ScanScope XT at 20x magnification at Harvard Medical 

School Tissue Microarray & Imaging Core. Deidentified data in the form of non-stained and H&E dye stained 

images at 20x magnification were analyzed at Massachusetts Institute of Technology. Individual prostate tissue 

needle core biopsy images from each whole slide image were extracted. Extracted core images were horizontally 

or vertically rotated to reduce non-tissue pixels. This resulted in 102 high-resolution native non-stained and H&E 

dye stained image pairs. 

Image registration and processing: Deparaffinized single core images (henceforth called as non-stained images) 

and subsequent H&E dye stained single core images of the same biopsy (henceforth called as H&E dye stained 

images) were registered using Photoshop CC software (Adobe Systems, San Jose, CA) and corrected for 

variances.1,2 Tissue shearing during the staining procedure resulted in regions that could not be registered that were 

cropped and discarded. 
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eTable 1. Data Distribution 

Patient Age Demographics Tumor Core 
(train, 
test) 

 
Training 
Patches 

Test-G3 

Patches 

Test-G4 

Patches 

Test-G5 

Patches 

1 84 Dominican: Hispanic G3 6,1 2023 
21 - - 

2 59 Unavailable: White G4, G5 (G4>G5) 
2,2 1977 - - - 

3 61 Unavailable: White 
 B9, G3, G4 (G3>G4)  

3 
1068 - - - 

4 71 European: White 
G3 5 1244 - - - 

5 71 
Unavailable: White G3, G4 (G3>G4) 2 2119 - - - 

6 71 Unavailable: White 
G4 2 1602 - - - 

7 72 Unavailable: White 
G4 3,4 1608 - 292 - 

8 72 European: White 
B9, G3, G4 (B9>>G3/G4) 3 173 - - - 

9 59 American: White 
B9 1,3 1825 - - - 

10 73 American: White 
G3 4 82 - - - 

11 60 Unavailable: White 
G3 2,2 3522 - - - 

12 68 Unavailable: White 
G3, G4, G5, (G4> G3/G5) 2 1556 - - - 

13 53 Unavailable: White 
G3, G4 2,5 2930 300 744 - 

14 51 Unavailable: Black /African 
American 

B9, G4 6 3369 - - - 

15 72 
Unavailable: White G3, G4 1,3,4 3297 2274 1738 - 

16 84 
Unavailable: White G4, G5 (G4>G5) 3,2 5083 - 220 270 

17 
77 

Declined: White G4 5 4094 - - - 

18 56 
Filipino: White G3, G4 (G4> G3) 2,6 1161 738 1133 - 

19 64 
American: White B9, G3, G4 (G3>G4), Rare G5 2,4 543 505 1351 - 

20 63 
Unavailable: White G4, G5 (G4 >G5) 2 716 - - - 
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21 67 
Black/African American G3, G4 (G4 >G3) 6 3549 - - - 

Patient 
Age Demographics Tumor Core 

(train, 
test) 

 
Training 
Patches 

Test-G3 
Patches 

Test-G4 
patches 

Test-G5 
patches 

23 
52 American: White G3, G4 (G3>>G4) 5,6 5714 - - - 

24 79 
American: White G3, G4, G5, (G4> G3/G5) 2 1923 - - - 

25 62 
Unavailable: White G3, G4 (G3>>G4) 3 1661 - - - 

26 63 
Unavailable: White G3, G4 (G3>>G4) 2 2725 - - - 

27 77 
Black/African American G3, G4 (G3>G4) 5,6 3586 - - - 

28 53 
American: White G4, G5 (G4>G5) 2 1331 - - - 

29 75 
American: White G3 1,2 905 1351 - - 

30 62 
Unavailable: White G3 2 2025 - - - 

31 65 
White/ Middle Eastern G3 3 2151 - - - 

32 67 
 African: White G3 1, 2 1005 920 - - 

33 68 
Dominican: Other G4, G5 (G4 > G5) 2 947 - - - 

34 73 
American: White G4 2,6 1857 - 536 - 

35 64 
American: White B9, G3 3 1148 - - - 

36 76 
Declined: White G4, G3 (G4 >G3) 2 810 - - - 

37 54 
Black / African American G3 1,2 1151 831 - - 

38 67 
Other: White G3 1 870 - - - 

Total  - - - - 78,322 7,019 6,146 270 
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eAppendix 2. Loss Function  

Consider 𝐼𝑢 and 𝐼𝑠 respectively represent the native non-stained and H&E stained image patches in the training 

dataset. The generator takes in 𝐼𝑢 as the input and generates 𝐼𝑐𝑠, the corresponding computationally stained image 

patch, as the output. The discriminator analyses the output image, 𝐼𝑐𝑠, and predicts the probability that 𝐼𝑐𝑠, is real 

(from the training dataset) or fake (output from generator). The loss function consisted of the cGAN loss,3 a L1 

component and a PCC factor between 𝐼𝑠 and 𝐼𝑐𝑠. The loss equation was: 

Ը𝑐𝐺𝐴𝑁(𝐺, 𝐷) = 𝐸𝑥,𝑦[𝑙𝑜𝑔𝐷(𝑥, 𝑦)] + 𝛼𝐸𝑥,𝑦[log(1 − 𝐷(𝑥, 𝐺(𝑥, 𝑧)))] 

Ը𝑐𝐺𝐴𝑁(𝐺, 𝐷) = 𝐸𝑥,𝑦,𝑧[‖𝑦 − 𝐺(𝑥, 𝑧)‖1] 

Ը𝑃𝐶𝐶(𝐺) = 𝐸𝑥,𝑦,𝑧[𝑃𝐶𝐶(𝑦, 𝐺(𝑥, 𝑧))] 

The final loss function is: 

𝐺∗ = 𝑎𝑟𝑔min
𝐺

max
𝐷

Ը𝑐𝐺𝐴𝑁(𝐺, 𝐷) + 𝜆Ը𝐿1(𝐺) + 𝛾Ը𝑃𝐶𝐶(𝐺) 

Where x is the input image, y is the target image and z is the random noise, added as dropout in our work. 

Ը𝑐𝐺𝐴𝑁(𝐺, 𝐷) is the 𝑐𝐺𝐴𝑁 loss function, Ը𝐿1(𝐺) is the 𝐿1loss between the output of the generator and the target 

image, and Ը𝑃𝐶𝐶(𝐺)is the proposed term that calculated the Pearson’s correlation coefficient between the generator 

output and target image. α=1, λ=100 and 𝛾 =10 gave best results. After training, the model accepted unseen native 

non-stained image patches and generated computationally H&E stained images patches. 

Technical implementation of the CGAN model: The discriminator was trained after every single training step for 

the generator. Both networks were trained for 10 epochs each using Adam optimization12, and a batch size of one 

on a NVIDIA GeForce 1080 TI GPU (NVIDIA, Santa Clara, CA) with 12 GB of VRAM and CUDA acceleration 

to speed up training. One epoch of training took approximately 16 GPU hours. The patches were randomly flipped 

and dropped out to prevent overfitting and increase generalization capability of the model. 
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eAppendix 3. Interpretation 

 

Methods: Non-overlapping patches were cropped from these four sets of images, resulting in four sets of around 

2000 patches (of size 1024x1024 pixels each). Patches not containing any tissue were discarded, resulting in 448 

patches for each set. These four sets of patches were fed into trained staining and destaining models. Nonstained 

and destained patches were fed into computational staining model, while computationally and H&E stained 

patches were fed into the computational destaining model. The activation maps generated after each layer block 

(lrelu – conv2d - batch norm) were saved for further analysis. Activation maps for selected patches were analyzed 

to understand the transformation of input images as they passed through the generator neural network layer, and to 

identify which convolutional kernels are activated. Activation maps generated by the top five most activated 

kernels were extracted, ranked and visualized by heatmaps. Activation maps for each layer were ordered in 

descending order (ranked by numbers of pixels of intensity greater than 200). Top five activation maps (heatmap) 

from each layer are shown in Figure 3 (benign input patch) and eFigure 3 (Gleason grade 3 tumor patch). 

Heatmaps were the standard ‘jet’ heatmaps plotted using matplotlib library in python. 

The activation maps, for an input image, for each layer were rescaled to 0-1 and resized to a standard size 

(128x128 pixels) and concatenated into a grid (16 by K grid, where k is variable and is equal to number of patches 

divided by 16). This process was done for every one of the 448 patches for all four image sets. The activation maps 

for the matching patches (unstained-destained and computationally stained-H&E stained input patch pairs) were 

compared and the mean squared error (MSE) was calculated. The MSE plot for the two sets of matching input 

patches can be seen in eFigure 5.  

Results: The top five activation maps (heatmaps) obtained from the first five layers (rows I-V) and the last four 

layers (rows 16-19) of the generator (excluding the input and output layers) are presented in Figure 3 and eFigure3 

and 4. The first five rows represent the first 5 layers of the generator and the last 4 rows represent the last four 

layers of the generator. It is evident from the activation heatmaps that the network does a good job of extracting the 

tissue from the background (eFigure 3, and 4: L1-I and L1-III). eFigure 3 and 4: L1-II, L1-III and L2-II, L2-IV and 

L2-V indicated that the model learnt to recognize some features in the tissue. As the image passed through the 

layers, we can see localized high activations (bright red and orange color), indicating region of interest learnt by 

the trained generator. While the initial layers learn low level features like tissue, background, circles and simple 

patterns, deeper layers learn to recognize high-level patterns (using a combination of the knowledge accumulated 

by the previous layers). It is difficult to understand these visualizations and they look like noise to the human eye. 

Layers 16 through 19 show the activation heatmap from the decoder side of the generator (Figure 3 and efigures 3 

and 4). These layers try to decode the encoded information back to the original size (1024x1024 output), while in 

the process computationally staining the image.” 

In eFigure 5 the blue lines represent the flow of MSE value through the layers for all 448 patch pairs unstained-

destained (left) and H&E stained - computationally stained (right). The green and orange lines are the first and the 

third quartile values. We can see the variance between the MSE values at all the layers for the 448 patches. The 

variance is higher for the encoder layers and is less for the decoder layers. This the case for both unstained-

destained plot and H&E stained - computationally stained plot. Peaks were observed at layers 3, 10 and 17. 
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eFigure 1. Color Coded Overlaid Validation Images 

In Figures 1- 13, each figure contains (a) Ground truth Hematoxylin and Eosin (H&E) dye stained RGB Whole Slide Images 
(RWSI); (b) Computationally H&E stained RWSI; (c) Computationally H&E stained RWSI overlaid with colors representing 
comparisons between true positive (green), false positive (red) and false negative (blue) of IOU of healthy and tumor annotations 
provided by five physicians on ground truth H&E dye and computationally H&E stained prostate core biopsy images; (d) Ground 

truth native non-stained RWSI image; (e) Computationally destained RWSI. 

 
eFigure 1.1 (a) Ground truth H&E dye stained RWSI with arrow highlighting atypical gland indeterminate for malignancy; (b) 
Computationally H&E stained RWSI with arrow showing atypical gland with preserved morphology as shown on image in panel (a). 
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eFigure 1.2 
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eFigure 1.3 
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eFigure 1.4 
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eFigure 1.5 (a) Ground truth H&E dye stained RWSI showing comedo necrosis (arrow); (b) Computationally H&E stained RWSI 
where malignant glands are well preserved (arrowheads), comedo necrosis is not evident (arrow). 
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eFigure 1.6 
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eFigure 1.7 (a) Ground truth H&E dye stained RWSI with arrow showing tumor; (b) Computationally H&E stained RWSI with arrow 
showing tumor. 
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eFigure 1.8 (a) Ground truth H&E dye stained RWSI with arrows indicating rare poorly formed glands; (b) Computationally H&E 
stained RWSI with arrows indicating rare poorly formed glands. 
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eFigure 1.9 
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eFigure 1.10 
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eFigure 1.11 
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eFigure 1.12 
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eFigure 1.13 
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eFigure 2. Visualization and Explanation of Computational Hematoxylin and Eosin 
Staining Process by Custom Autoencoder Neural Network 

Panel (a) Processing of native non-stained prostate core biopsy images as various layers of the encoder and decoder neural 
networks computationally stain them. The blue boxes represent hidden activation layers of the neural network. Panel (b) A single 
input native non-stained patch and representative concatenated activation maps from the corresponding hidden layers in panel (a) 
of kernels of the decoder neural network as it flows through them, are shown. 
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eFigure 3. Activation Maps of Kernels of Trained Generator Neural Network Model 
Layers 

Activation maps of kernels of trained generator neural network model layers after feeding a native non-stained prostate core 
biopsy image patch with Gleason grade 3 tumor as it gets computationally Hematoxylin and Eosin stained. Rows show top five 
activation maps from layers L1 - L5 and L16 - L19 arranged in decreasing order of their activations from left to right (columns I-V).  
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eFigure 4. Activation Maps of Kernels of Various Generator Neural Network Layers 
After Entering Hematoxylin And Eosin Dye–Stained Patch With Gleason Grades 4 And 
5 Prostate Tumor 

Panel (a) and (b) show Gleason grade 4 and 5 respectively. Rows show top five activation maps from layers L1 - L5 and L16 - L19 
arranged in decreasing order of their activation from left to right (columns I-V). 
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                                                                               (a) 
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eFigure 5. Comparison of Mean Squared Errors Between Kernel Activation Maps of 
Pairs of 448 Validation Image Patches Generated by the Trained Neural Network 
Models 

(a) MSE of ground truth native non-stained and corresponding computationally destained input patch activation maps generated 
by the trained computational staining model; (b) MSE of computationally Hematoxylin and Eosin (H&E) stained – and 
corresponding ground truth H&E dye stained matching input patch activation maps generated by the trained computational 
destaining model. Blue lines represent the MSE values for each of the 448 input pairs. Red curve represents average MSE value 
at each layer of the generator for all input pairs. The green and orange curves represent the first and third quartile MSE values for 

all input patch pairs. Lower MSE indicates more accuracy between the activation maps being compared. 

 

(a) 

 

(b) 
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eTable 2. Mean Pixel Intensity Following Computational Staining and Destaining 

Average pixel intensity differences following computational staining and destaining: Difference between Native non-stained and 
computationally stained (U_C); native non-stained and H&E dye stained (U_H); ground truth H&E dye stained and computationally 
stained (H*_C); H&E dye stained and computationally destained (H_D); H&E dye stained and native non-stained (H_U); 
computationally destained and ground truth native non-stained (D_U*). All values are in pixel intensities (0 to 255) calculated by 
subtracting the 2nd from 1st image. Positive values indicate decrease in average pixel intensities and negative values indicate gain. 
Values have been rounded to nearest integer. H is H&E dye stained image, C is computationally stained image, D is 
computationally destained image and U is native non-stained image. Ground truth images are indicated with ‘*’ to facilitate 
comparisons with computational images when necessary. 

 

Image Computational staining Computational destaining 

U_C 
(±std) 

  
U_H(±std) 

H*_C(±std) H_D(±std) H_U(±std) D_U*(±std) 

1 -42 -43 1 45 43 -3 

2 -30 -26 -4 37 26 -11 

3 -39 -47 8 40 47 1 

4 -48 -49 1 48 49 1 

5 -48 -44 -3 44 44 0 

6 -32 -34 2 44 34 -10 

7 -19 -21 1 32 21 -12 

8 -53 -53 0 58 53 -5 

9 -45 -48 3 56 48 -8 

10 -42 -40 -2 44 40 -4 

11 -43 -42 -2 48 42 -6 

12 -56 -66 10 62 66 4 

13 -50 -58 8 56 58 2 

MEAN -42±10 -44±12 2±4 47±8 44±12 -3±5 
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eTable 3. Change in Mean Pixel Intensity in Red, Green, and Blue Channels per 
Image 

ST1: Change in average pixel intensity (Red channels) per image: Native non-stained to computationally stained image (U_C), 
Native non-stained to Hematoxylin and Eosin (H&E) dye stained image (U_H), H&E dye stained to computationally restained (H_C). 
All values are in pixel intensities (0 to 255) calculated by subtracting the 2nd image from 1st image. Positive values indicate drop in 
average pixel intensity and negative values indicate gain in pixel intensity. H is H&E dye stained image; C is computationally stained 
images and U is native non-stained image. Values have been rounded to nearest integer. 

 

Image U_C(± std)            U_H (±std)             H_C(±std) 

1 -66 -66  0 

2 -38 -36 -3 

3 -51 -59  7 

4 -58 -57                    0 

5 -60 -53 -7 

6 -60 -59 -1 

7 -48 -50 2 

8 -68 -67 -1 

9 -62 -61 -1 

10 -55 -49 -6 

11 -57 -54 -3 

12 -75 -81  6 

13 -59 -62  3 

MEAN -58±9 -58±10  0±4 

ST2: Change in average pixel intensity (Green channels) per image: Native non-stained to computationally stained image (U_C), 
Native non-stained to Hematoxylin and Eosin (H&E) dye stained image (U_H), H&E dye stained to computationally restained (H_C). 
All values are in pixel intensities (0 to 255) calculated by subtracting the 2nd image from 1st image. Positive values indicate drop in 
average pixel intensity and negative values indicate gain in pixel intensity. H is H&E dye stained image; C is computationally stained 
images and U is native non-stained image. Values have been rounded to the nearest integer. 

 

Image       U_C (±std)         U_H (±std)          H_C (±std) 

1 -2 -2 0 

2 6 11 -6 

3 -2 -12 10 

4 -15 -16                    1 

5 -14 -11 -3 

6 10 6 4 

7 24 24 0 

8 -23 -22 -1 

9 -11 -15 4 

10 -5 -4 -1 

11 -6 -4 -3 

12 -23 -35 12 

13 -19 -29 11 

MEAN -6±𝟏𝟑 -8±16 2±5 
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ST3: Change in average pixel intensity (Blue channels) per image: Native non-stained to computationally stained image (U_C), 
Native non-stained to Hematoxylin and Eosin (H&E) dye stained image (U_H), H&E dye stained to computationally restained (H_C). 
All values are in pixel intensities (0 to 255) calculated by subtracting the 2nd image from 1st image. Positive values indicate drop in 
average pixel intensity and negative values indicate gain in pixel intensity. H is H&E dye stained image; C is computationally stained 
images and U is native non-stained image. Values have been rounded to nearest integer. 

 

Image       U_C (±std)      U_H (±std)            H_C (±std) 

1 -58 -60 2 

2 -58 -55 -4 

3 -62 -70 7 

4 -71 -74                     3 

5 -70 -69 -1 

6 -46 -49 3 

7 -34 -35 2 

8 -70 -71 1 

9 -64 -68 4 

10 -66 -67 1 

11 -67 -68 1 

12 -72 -82 11 

13 -73 -83 10 

MEAN -62±11 -65±13 3±4 
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eTable 4. Intrarater Agreement Calculated on Dye Stained and Computationally 
Stained Images 

Intra-rater agreement calculated on Hematoxylin and Eosin (H&E) dye stained RGB Whole Slide Images (RWSI) and 
computationally stained RWSI using Intersection over Union (IoU). `-' indicates that the tumor (or tumor grade) label was not 
provided by the pathologists. Higher IoU score is better with a score of 1.0 representing perfect match of labels. 

 

Image       H&E dye RWSI        Computationally stained RWSI  
              (±std)                                      (±std) 

1                       
2 
3 
4 
5 
6                    
7 
8 
9 
10 
11 
12                       
13 

MEAN 

              0.83                                          0.59 
              0.85                                          0.75 
                 -                                                - 
              0.73                                           0.75 
              0.84                                           0.70 
              0.78                                           0.89 
              0.76                                           0.78 
              0.71                                           0.73 
              0.79                                           0.80 
              0.76                                           0.78 
              0.97                                           0.87 
                 -                                                 - 
              0.82                                           0.83 
              0.81±0.07                                  0.77±𝟎. 𝟎𝟖 

Statistical analysis using t-test (p value~0.28>0.005) for the intra-IOU values shows no significant 
difference between the mean of intra-IOU of H&E stained (mean~0.81, std~0.072) and Computationally 
stained images (mean~0.77, std~0.08). 
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eAppendix 4. Evaluation of the Activation Maps of Trained Deep Neural Network  

Clinical evaluations of computationally stained images: Figure 2 in the manuscript shows representative input non-

stained image patches in row (a) that had Gleason grade 3 (columns I, II) or 4 (columns III, IV) tumors or were 

benign (column V), and their computational H&E staining (row c) and accuracy calculated using annotations by 

multiple physicians (row d). Tissue morphology in computationally stained patches (row c) matches closely with 

H&E dye stained patches (row b). Patch c-I successfully generated a benign area along with tumor signature (as 

indicated by arrows) and confirmed in row d-I. Computationally stained patches (row c) retain appearance of 

benign and malignant glands and stroma seen in H&E dye stained patches (row b). Patch b-III also contains 

edge/crush artifact (arrowheads) that is preserved in computationally stained image (row c-III). Same patches are 

shown (row d) with color-coded areas of agreement and disagreement between the labels provided on H&E dye 

stained images and computationally stained RWSI. It is evident that the computationally H&E stained patches 

represent tumor signatures with high accuracy and pathologists are able to correctly identify tumor. Majority of 

observed disagreements between raters did not represent misidentification of glands as benign or malignant. 

Instead, they show differences in rater annotation at borders of tumor labels, mainly due to differences in labeling 

style with some raters providing course labels and others annotating detailed labels (row d-III, arrows), or biopsy 

edges, as some raters chose to score partial/crushed glands at the periphery of samples and others did not (row d-

III, arrowheads). Reconstructed computationally stained images shown in eFigure 1.1.b and 1.2.b (used for 

validation of the trained neural network) morphologically represented benign and malignant glands and stroma 

well enough to be consistently identified by pathologists (eFigure 1.1.c and 1.2.c) when compared with 

corresponding H&E dye stained images (eFigure 1.1.a and 1.2.a). A vast majority of tumor also showed annotator 

agreement. In some instances, “atypical” glands that were morphologically indeterminate for malignancy led to 

interpretative discrepancies however showed preserved morphology in the computationally stained images (e.g. 

arrows in eFigure 1.1.a and 1.1.b). Ground truth non-stained (eFigure 1.1.d and 1.2.d) and corresponding 

computationally destained images (eFigure 1.1.e and 1.2.e) are also shown for comparison. eFigure 1.4.b, 1.6.b and 

1.7.b show the most reported areas of disagreement many of which are attributed to atypical glands that were hard 

to categorize on both images but were well represented on the computer-generated images (eFigure 1.4.c, 1.6.c and 

1.7.c). eFigure 1.5 shows the uncommon Gleason pattern 5 tumors with comedo necrosis (eFigure 1.5.a, arrow). 

The morphology of the tumor glands is well maintained (eFigure 1.5.b, arrowheads), but the comedo necrosis is 

not visualized eFigure 1.5.b, arrow). The dye-stained image in eFigure 1.7.a contains an infrequently encountered 

scenario (indicated by an arrow), the presence of rare malignant glands that are not well visualized on the 

computationally stained image (eFigure 1.7.b, arrow). Despite this altered appearance, there was no impact on 

clinical diagnosis as the blinded reviewers scored these areas as tumor. Some glands are poorly formed on both the 

dye stained and the computationally stained image (eFigure 1.8.a, 1.8.b, arrows), leading to disagreement between 

raters, even though the computationally stained image were identical to dye stained image. Images shown in 

eFigure 1.9 presented a challenging labeling exercise where tumor cell cytoplasm was very pale and did not show 

significant contrast to the background stroma in the dye-stained image (eFigure 1.9.a). This cytoplasmic pallor was 

also well preserved in the computationally stained image (eFigure 1.9.b). Despite this, appearance of the nuclei and 

the slight difference in cytoplasmic texture made the tumor identifiable in both images (eFigure 1.9.c and 1.9.d). 

The computationally stained images shown in eFigure 1.10.b, 1.11.b, 1.13.b were well represented. Majority of the 

disagreement in these images arose due to tumor/non-tumor boundary and biopsy edge issues. Validation images 

in eFigure 1.11.b and 1.13.b illustrated additional high-quality examples of preserved morphology generated by the 

computationally staining algorithm, which confirmed accurate matching with dye stained images in benign 

conditions. Non-necrotizing granulomas, marked chronic inflammation, reactive stromal changes and 

proteinaceous debris were all morphologically identifiable in the computational stained images (eFigure 1.11.c). 

Pathologists unanimously scored the matched H&E dye stained and computationally stained images shown in 

eFigure 1.3 and 1.12 as benign. 
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eTable 5. Comparison of Tumor Grades Between Original Expert Microscopic 
Diagnosis  

Comparison of tumor grades between original expert microscopic diagnosis [as reported in the Electronic Health Records (EHR)], 
using the Hematoxylin and Eosin (H&E) stained glass slide and the diagnosis of the computationally stained image. *Agreements 
confirmed upon re-review of the microscopic slide and additional supportive studies; † Not clinically significant within the context of 
the patients known tumor. 

   

Image Initial diagnosis after biopsy Diagnosis using computationally stained image 

1 40% grade 3 tumor in core 40% grade 3 tumor in core 

2 50% grade 3 tumor in core 90% grade 3 tumor in core*,† 

3 Benign core Benign core 

4 50% grade 3 tumor in core 50% grade 3 tumor (majority) with 

   traces of grade 4 tumor† 

5 50% grade 4 and 5 tumor on core 50% grade 4 and 5 tumor on core 

 (G4 > G5) (G4 < G5)† 

6 40% grade 3 and 4 tumor in core 40% grade 3 and 4 tumor in core 

  (G3 >> G4) (G3 >> G4)† 

7 40% grade 3 tumor in core 40% grade 3 and 4 tumor in core 

    (G4 >> G3)† 

8 40% grade 3 and 4 tumor in core 40% grade 3 and 4 tumor in core 

9 20% grade 3 tumor in core 20% grade 3 tumor in core 

10 90% grade 3 and 4 tumor in core 90% grade 3 and 4 tumor in core 

11  Healthy core Tiny focus of grade 3 tumor in core*,† 

12 Healthy core Healthy core 

13 90% grade 4 tumor in core 90% grade 3 and 4 tumor in core 

  (G3 << G4)† 
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eAppendix 5. Comparison With Patient Records 

After expert re-review of the original slides and additional evaluation by immunohistochemistry, the original EHR 

diagnosis was overturned in two cases, resulting in two additional cases of agreement. Pathologists reviewing 

computer-generated core 11 were able to better identify the presence of rare glands of Gleason grade 3 tumors than 

those who had rendered the original EHR diagnosis of benign (eFigure 1.11 marked blue/green in the supplement). 

Microscopic re-review of the original glass slide confirmed that it indeed had a tiny focus of grade 3 tumor that 

was overlooked at the time of the original diagnosis. Subsequent immunohistochemical analysis revealed the 

absence of basal cells around the glands in question, confirming the diagnosis of carcinoma made during this study 

and revealing the diagnosis conferred on the computationally generated images to be correct. eFigure 1.2 was the 

only study biopsy that showed a significant difference in tumor fraction, as this study reported 50% tumor fraction 

and the original EHR report was 90%. Re-review of the original glass slide again showed this study fraction to be 

more accurate than the original diagnosis (eFigure 1.2). Otherwise, the tumor fraction identified in all the 

computationally generated images approximated the fraction reported in the EHR for all images as evident from 

eTable 5. None of the differences between EHR and computationally generated H&E diagnosis were clinically 

significant with regard to treatment decisions. A difference in grade of tumor was identified in a minor component 

of computationally stained images (eFigure 1.4, 1.7 and 1.13). The small foci of higher or lower grade tumor 

identified in computationally stained images (eFigure 1.4.c, 1.7.c, and 1.13.c), which were not reported at the time 

of original diagnosis, comprised a very small fraction of tumor volume. These were often associated with 

diagnostically indeterminate questions (e.g. whether a gland represented a rare focus of grade 4 tumor or if it was 

tangential sectioning of grade 3 tumor), and were not clinically significant in the context of the patient's known 

tumor at the time of original EHR reported diagnosis. 
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